
Spline-FRIDA: Enhancing Robot Painting
with Human Brushstroke Trajectories

Lawrence Chen

CMU-CS-24-140

August 2024

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Jean Oh, Chair
Jim McCann

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science.

Copyright © 2024 Lawrence Chen

Keywords: Robotics, Painting, Art, Generative AI, Machine Learning, Human-Computer
Interaction

To my parents

iv

Abstract
A painting is more than just a picture on a wall; a painting is a process comprised

of many intentional brush strokes, leading to a performance far richer than the final
output. The shapes of individual strokes are an important component of a painting’s
style. This is especially true for sparse sketches, where individual strokes are isolated
and prominent. Prior work in modeling brush stroke trajectories either does not
work with real-world robotics or is not flexible enough to capture the complexity of
human-made brush strokes. In this work, we aim to develop a robotic drawing agent
with controllable stroke-level style based on human trajectories.

To achieve this, we develop a framework to collect brush trajectories from human
artists on a real canvas. We model these trajectories with an autoencoder. Finally, we
incorporate the autoencoder into the planning pipeline in the FRIDA robotic painting
system [22]. We find that, off-the-shelf, FRIDA’s brush stroke renderer struggles or
fails to learn the complex trajectories from the human demonstration data, especially
with narrow brushes or markers. We present a novel brush stroke renderer that is
capable of generalizing to complex, human-made brush strokes while maintaining a
small Sim2Real gap.

We conduct a survey on Amazon Mechanical Turk to evaluate our method quan-
titatively. The results indicate that Spline-FRIDA successfully captures the stroke
styles in human drawings. They also suggest that Spline-FRIDA’s drawings are more
human-like, higher quality, more true to the objective, and more artistic compared to
FRIDA’s drawings.

vi

Acknowledgments
To begin, I would like to express my gratitude for my collaborators: Peter Schalden-

brand, Tanmay Shankar, Lia Coleman, and Jean Oh. This thesis would not have been
possible without their contributions. Peter, thank you for your thoughtful feedback
on all my ideas, for always being available to answer my questions on Slack, and for
helping me get up to speed with FRIDA. Peter and Tanmay, I’m especially grateful
for the time you dedicated to our weekly meetings. The advice and support you gave
were invaluable in shaping the direction of this project. Lia, the pioneering work
you did with the mocap system laid the groundwork for much of what followed, and
is greatly appreciated. I also want to extend my thanks to my advisor, Jean, for all
your support throughout the past year. I’m so grateful that you took a chance on me
and gave me the opportunity to work with all of you. Additionally, a huge thank you
to Jim McCann for agreeing to serve on my thesis committee and taking the time to
review this work.

Next, I want to express my appreciation for my family—my parents, my sister,
and even my cat. You were always there for me to provide care and guidance when I
needed it most. Last but not least, I would like to thank my friends for their support,
whether it be providing encouraging words, being there to listen, or simply helping
me unwind when I needed a break. This includes, but is not limited to: Sam, Brian,
Emily, Prem, Kelvin, Jason, Casey, Joyce, Claire, and Angel.

viii

Contents

1 Introduction 1

2 Related Work 3
2.1 Stroke Primitives . 3
2.2 Differentiable Rendering . 3

3 Background 5

4 Methods 7
4.1 Overview . 7
4.2 Motion Capture Drawing Recording and Processing 7
4.3 TrajVAE . 8
4.4 Traj2Stroke Model . 9

5 Results 11
5.1 Human Evaluations . 11
5.2 Trajectory Distributions . 13
5.3 Stroke Modeling Experiments . 15

6 Limitations/Future Work 19
6.1 RL-FRIDA . 20

7 Conclusions 23

Bibliography 25

ix

x

List of Figures

1.1 Spline-FRIDA drawings in different styles. These are two drawings of a parrot
made by our system. The left drawing uses longer, zig-zagging strokes, while the
right drawing is composed of small circles. 1

3.1 Weaknesses in FRIDA’s stroke model. Left: FRIDA struggles with rendering
thin strokes. Right: for a full drawing, errors in individual stroke predictions
accumulate. The optimization process exploits blotchy predictions made by the
renderer to create small dots, which appear quite different when actually executed. 5

4.1 Rendering a stroke. The inputs are a latent vector z and an offset ∆. z is fed
through the decoder of a TrajVAE, generating a raw trajectory, which is then
rotated and translated according to ∆. We then process the trajectory segments
independently, obtaining darkness values for each. Finally, we take the max
darkness over all segments. 8

4.2 Mocap setup. We use a motion capture system to track the position of the canvas
and pen over time as an artist draws. Three mocap markers are placed along the
corners of the canvas, and four are mounted at the end of the pen. The trajectories
of each stroke are extracted, then rotated and translated such that the start of the
trajectory is (0, 0) and the end point is on the x-axis. 8

5.1 Example drawings made by Spline-FRIDA. Each column represents a distinct
trajectory style and each row uses a different objective. For these examples, we
maximize the CLIP similarity score between the canvas and the objective. The
top row contains original drawings made by human artists on our mocap system.
One VAE was fine-tuned on each human drawing and used to plan the drawings
in each column. 12

5.2 Confusion matrix for matching task. The x-axis represents the index of the
specific TrajVAE used to generate the drawing, and the y-axis represents the
index of the human drawing participants thought was most similar. The five
human drawings/styles the same ones as in the top row of Figure 5.1, with the
same order. 13

5.3 Mapping the latent space. We visualize the TrajVAE latent space by drawing
trajectories at their respective coordinates, projected down to 2 dimensions via t-
SNE. To generate this plot, we use a TrajVAE that is trained on multiple sessions
of human trajectory data. 14

xi

5.4 Visualizing the outputs of various stroke models. The first three rows contain
sharpie strokes, and the last three contain brush strokes. Traj2Stroke is near-
perfect for the sharpie strokes, and reasonable for the brush strokes. The CNN-
based models may fail to generalize to novel trajectories (rows 1, 3, 4). 17

5.5 Spline-FRIDA’s low Sim2Real gap. We compare a plan made by Spline-FRIDA
with its execution (physically drawn with a robot). The two are nearly identical. . 18

6.1 RL-FRIDA Preliminary Results. This figure depicts some example plans made
by RL-FRIDA. The left column shows drawings made by an agent trained to min-
imize the pixelwise L2 loss to the target, while the right column shows drawings
made by an agent trained to minimize CLIP loss. 21

xii

List of Tables

5.1 Opinions on FRIDA vs Spline-FRIDA. Each cell shows the number of partici-
pants that chose the system for the given question. Overall, participants thought
that compared to FRIDA, drawings made by Spline-FRIDA were more human-
like, higher quality, more true to the objective, and more artistic. 15

5.2 Quantitative comparison of stroke models. This table shows the average L1
loss of each stroke model when predicting either sharpie or brush strokes (lower
is better). Loss is calculated on dataset B (out-of-distribution) trajectories only.
Traj2Stroke achieves the best results for sharpie strokes, and Traj2Stroke with
U-Net is the best for brush strokes. 16

xiii

xiv

Chapter 1

Introduction

Paintings and drawings are used to convey messages of emotion, cultural values, and shared
experiences. While these aspects can be conveyed by the objects or subjects within the painting,
style is perhaps just as important to expressing those messages. “The ‘same’ content represented
in a different form—in a different medium or mode or style or language—is not the same: what
is the same through all variations of the form is only a tenuous abstraction, a précis of the full
content” [18]. In the visual art space, there is evidence that people find the style of an image to
be even more crucial than its content when interpreting the meaning of a generated image [21].
In particular, patterns in the shapes of individual strokes within a painting can contribute to the
overall style and aesthetic of an artwork. Two examples of this can be seen in Figure 1.1. The
drawing on the left uses a style with long, jagged strokes, giving the parrot a fluffy texture. On
the other hand, the drawing on the right is composed of small circular strokes, resulting in a
different texture. In both cases, the stroke shapes are crucial for defining the painting’s style and
therefore the expression of the message that the artist intends to convey.

Figure 1.1: Spline-FRIDA drawings in different styles. These are two drawings of a parrot
made by our system. The left drawing uses longer, zig-zagging strokes, while the right drawing
is composed of small circles.

Furthermore, if robots are to support humans in the creation of artwork, it is important for

1

the robot to have flexible styles of strokes for the user to specify either through choice or demon-
stration. Many artists do not wish to automate the artistic process [6, 7], but some are open to
co-creative assistants [1, 2, 9, 10]. The work operates on the assumption that giving more cre-
ative control to a user co-creating with a robot over the style of the image, allows them to feel
more ownership over the artwork that they create with the robot.

In this thesis, we explore how stroke-level style control can be added to FRIDA [22], an
open-source framework for robot painting. FRIDA uses simple Bézier curves as stroke primi-
tives, but this representation lacks human style. To adapt FRIDA to generate more human-like
brush strokes, we use motion capture to record human drawings with real-world brushes and
markers on paper. We model these recorded trajectories with an autoencoder. We find that
FRIDA’s brush stroke renderer is unable to model the complex strokes that humans create be-
cause it is a purely data-driven approach and lacks generalizability, leading to a large Sim2Real
gap. Thus, we introduce a novel brush stroke renderer, Traj2Stroke, that is capable of modeling
the stroke trajectories that we collected. This new renderer has a similarly small Sim2Real gap as
the FRIDA renderer on simple strokes, but can also model much more complex strokes without
breaking down. Traj2Stroke is fully differentiable, enabling it to be used in the FRIDA plan-
ning pipeline which can plan abstractly according to a robot’s capabilities, e.g., black-and-white
sketches from input color photographs.

To summarize, our main contributions are as follows:
• We introduce Traj2Stroke, a method to differentiably render polylines with variable thick-

ness. Compared to FRIDA’s renderer, Traj2Stoke has a significantly smaller Sim2Real gap
between simulated and real sharpie strokes.

• We present a successful approach to modeling styles of brushstroke trajectories using vari-
ational autoencoders. This gives users control over the shapes of individual strokes used
for a robot painting.

• We demonstrate the viability of using motion capture to track a human artist’s drawing in
real time. We are able to accurately recover stroke trajectories from the raw position data.
We open source a small dataset of human drawings collected with this method.

2

Chapter 2

Related Work

Stroke-Based Rendering (SBR) involves arranging primitive shapes to create an image, often
with the goal of replicating some target image. Many recent works use forward prediction meth-
ods, in which a neural network learns to output the next stroke to add [4, 14, 20], as well as
optimization-based methods, where stroke parameters are passed through a differentiable ren-
dering pipeline and optimized via backpropagation [16, 22, 28].

2.1 Stroke Primitives
Most SBR research is focused on global planning and propose new algorithms to arrange stroke
primitives. On the other hand, there has been little research into how the stroke primitives them-
selves should be defined. Some works use definitions that would be difficult to replicate on
a physical robot. For instance, Learning to Paint defines strokes as translucent Bezier curves
with arbitrary thicknesses [4]. Schaldenbrand et al. found that when Learning to Paint’s neural
network was restricted to outputting realistic brush strokes, the quality of generated images suf-
fered [20]. Paint Transformer uses a mask of a brush stroke that can be transformed, resized, and
recolored [14]. However, the wide range of stroke sizes presents a problem, as some strokes can
be half the size of the canvas, while others are thin enough to capture fine details. In practice,
implementing a setup in real life that allows the robot arm to make arbitrarily sized brush strokes
is infeasible.

Based on human art, many drawing tools, such as markers or brushes, can inherently be
versatile and adaptable enough to produce a wide range of stroke styles. Specifically, altering the
paths of individual strokes can result in diverse styles. This has been observed and researched
extensively in the context of human handwriting replication [3, 15], but only to a lesser extent
for drawings. We hope to further explore how to define stroke primitives by explicitly modeling
the style of stroke trajectories used in a drawing.

2.2 Differentiable Rendering
In SBR, differentiable renderers are modules that take in stroke parameters and output a rendered
image. They differ from traditional renderers in that gradients of the image with respect to the

3

parameters can be obtained. Having access to such a module is a crucial assumption of many
modern SBR planners.

Learning to Paint [4] takes a reinforcement learning approach to SBR. Despite the fact that
reinforcement learning does not inherently require a differentiable environment, they found that
using a differentiable renderer greatly boosted the system’s performance and convergence rate
compared to a model-free method. This is mainly because differentiable environment allows for
end-to-end training of the DRL agent. Paint Transformer [14] also makes use of differentiable
rendering so that a loss can be backpropagated from the output image all the way back to its stroke
predictor. These examples show that differentiable rendering can be useful even in methods that
are not optimization-based.

DiffVG [11] is a popular library for differentiable 2D rasterization that has been used in
many optimization-based SBR methods [5, 25, 26]. It supports rendering arbitrary parametric
curves, either open or closed, including polygons, ellipses, and polylines. Due to its popularity,
we also considered using DiffVG to model Sharpie marker strokes for this work. However, we
discovered that out of the box, the DiffVG library does not support rendering polylines that are
differentiable with respect to stroke thickness. DiffVG lines are only differentiable with respect
to the control points. Furthermore, DiffVG decouples strokes into a boundary shape and a fill
color, which we found to be too restrictive because it does not allow us to model the gradual
dropoff in darkness from the center of a stroke to the outside. Thus, we choose to implement our
own differentiable renderer, Traj2Stroke, which is specialized for rendering polylines.

4

Chapter 3

Background

Our work is based on FRIDA [22], a robotic system that can paint what users describe via text
prompts, images, or even audio recordings [17] in an interactive and collaborative manner [23].

FRIDA is an optimization-based SBR method. It works by using a fully differentiable ren-
dering module that takes in a list of stroke parameters and outputs a rendered drawing. Initially,
the planner assigns random values to the stroke parameters. It optimizes these values by passing
them through the rendering module, computing a loss according to the user-specified objectives,
and back-propagating it to the parameters. After many iterations, the system converges on a set
of stroke parameters that can be executed on the robot.

Plan ExecutionPredictionGround Truth

Individual Strokes Full Drawing

Figure 3.1: Weaknesses in FRIDA’s stroke model. Left: FRIDA struggles with rendering
thin strokes. Right: for a full drawing, errors in individual stroke predictions accumulate. The
optimization process exploits blotchy predictions made by the renderer to create small dots,
which appear quite different when actually executed.

FRIDA renders strokes using a convolutional neural network (CNN). Although the CNN
approach works well for short, simple strokes made with a paintbrush, it has trouble converging
when longer, thinner Sharpie marker strokes are used, as illustrated in Figure 3.1. We believe
this issue arises because thin ground truth strokes require the renderer to achieve a higher level
of precision, complicating its task. Consequently, the CNN often produces blotchy, incomplete

5

predictions. This is problematic since the errors compound during the planning stage (illustrated
on the right side of Figure 3.1).

Another avenue for improvement is FRIDA’s stroke representation. FRIDA uses quadratic
Bézier curves defined by three parameters—length, height above the canvas, and bend—to rep-
resent strokes. While this straightforward approach offers convenience, it falls short in capturing
the complexity and variety inherent in human drawings. In this context, we propose a novel
stroke representation and a new renderer to model long, complex trajectories that can enable
diverse styles.

6

Chapter 4

Methods

4.1 Overview

Our approach to stroke modeling and renderering consists of (1) capturing and processing human
demonstration data using motion capture technology, (2) modeling these trajectories by training
an autoencoder, TrajVAE, and (3) using Real2Sim2Real methodology to fine-tune our novel
rendering approach, Traj2Stroke. Importantly, we switch to a new stroke representation in which
trajectories can be arbitrary polyline splines rather than quadratic Bézier curves.

A visualization of the rendering pipeline for a single stroke is shown in Fig. 4.1. Stroke
parameters are expressed as (z,∆) pairs, where z is the latent vector describing the shape of the
stroke, and ∆ represents its rotation and translation on the canvas. z is fed into the decoder of a
variational autoencoder, which outputs a trajectory. This is then rotated and translated according
to ∆. The next part of the pipeline is the Traj2Stroke model, which differentiably renders the
trajectory using a sequence of tensor operations. The output is an array of darkness values in the
interval [0, 1].

Finally, the individually rendered strokes are stamped onto the same canvas to create the final
painting. Importantly, each step in this process is differentiable, which allows gradients to flow
from the painting back to the stroke parameters.

4.2 Motion Capture Drawing Recording and Processing

A motion capture system is utilized instead of a drawing tablet to capture human brushstroke
trajectories, as it better replicates the robot’s environment (both humans and robots use identical
physical tools).

While the artist sketches, we continuously track the positions and orientations of the canvas
and pen. For each frame, we calculate the position of the pen tip and determine its distance from
the canvas. If this value is below a threshold, we consider the pen to be in the down position.
Consecutive positions where the pen is down are merged into trajectories. Each trajectory is then
standardized by translating it to the origin and rotating it to be horizontal (ending at y = 0), as
seen in Figure 4.2. We also resample each trajectory to have exactly 32 points.

7

𝑧
Latent VAE

Decoder

0

...

1

...0 1

𝐺

𝑢 =
𝑥𝑘
′

𝑦𝑘
′

𝑣 =
𝑥𝑘+1
′

𝑦𝑘+1
′

ℎ𝑘
ℎ𝑘+1

Eq.
4, 5

Segment 𝒌

...
...

maxEq.
1, 2, 3

[(𝑥1,𝑦1,ℎ1),
...

 (𝑥𝑛,𝑦𝑛,ℎ𝑛)]

Raw Trajectory

Distance Map

Height Map

Offset Trajectory

[(𝑥1′,𝑦1′,ℎ1),
 ...

 (𝑥𝑛′ ,𝑦𝑛′,ℎ𝑛)]

Reorient

∆
Offset

Segment Darknesses

Rendered Stroke

...
...

Figure 4.1: Rendering a stroke. The inputs are a latent vector z and an offset ∆. z is fed through
the decoder of a TrajVAE, generating a raw trajectory, which is then rotated and translated ac-
cording to ∆. We then process the trajectory segments independently, obtaining darkness values
for each. Finally, we take the max darkness over all segments.

(0,0) x

y

Translate &
Rotate

Figure 4.2: Mocap setup. We use a motion capture system to track the position of the canvas
and pen over time as an artist draws. Three mocap markers are placed along the corners of the
canvas, and four are mounted at the end of the pen. The trajectories of each stroke are extracted,
then rotated and translated such that the start of the trajectory is (0, 0) and the end point is on the
x-axis.

Thus, each human brushstroke trajectory is modeled as a polyline (piecewise linear) going
through 32 control points. This polyline is encoded as a 32× 3 tensor. The coordinates (x, y, h)
of each control point are defined by x and y as horizontal displacements (in the plane of the
canvas) and h as vertical displacement (elevation above the canvas).

4.3 TrajVAE

After collecting and processing the motion capture data, we train variational autoencoders [8]
to model these stroke trajectories. We name these TrajVAEs. During training, a TrajVAE takes
a trajectory as input, passes it through an encoder that compresses it to a latent vector of size
64, and then sends it through a decoder to turn it back into a trajectory. We minimize the mean
squared error between the input and output trajectories.

8

During a single motion capture recording, we record roughly 100 human-drawn trajectories.
We found that this is not enough data for a TrajVAE to converge. Instead, we pretrain each
TrajVAE on trajectories aggregated from multiple recording sessions, then fine-tune it on a single
session to capture a more specific style. Each model converges very fast (less than a minute) and
only requires a few (<20) trajectories in the fine-tuning dataset.

During the planning phase, only the VAE decoder is used. The design of the overall pipeline
is modular so that different VAEs can be swapped in, allowing us to change the stroke style with
no need for additional training.

4.4 Traj2Stroke Model
The TrajVAE model outputs a trajectory that the robot should draw, but to predict the appear-
ance of the stroke given this trajectory, we developed a novel rendering approach that we call
Traj2Stroke. Traj2Stroke takes a trajectory, as well as positional and rotational offsets, and ren-
ders it as an H×W image. Importantly, this process is differentiable so that the planning process
can backpropagate through it.

To train this model, we randomly sample trajectories from TrajVAE, execute them on the
robot, and take before/after pictures of the canvas for each stroke. Next, we input the sampled
trajectories into the Traj2Stroke model to get predicted stroke masks. These masks are stamped
onto the before-stroke pictures, and the resulting prediction is compared to the after-stroke pic-
tures. We minimize a weighted L1 loss that places higher weight on pixels covered by the new
stroke. A separate Traj2Stroke model must be trained for each drawing medium (marker/brush).

After receiving a trajectory [(x1, y1, h1), · · · , (xn, yn, hn)] and offsets ∆ = (∆x,∆y,∆θ), the
Traj2Stroke model begins by reorienting the trajectory to be in the reference frame of the canvas
(see Figure 4.1). To do this, it rotates the x and y components by ∆θ. It then scales and translates
them so that each point (xi, yi, hi) becomes

(mxxi + bx +∆x, myyi + by +∆y, h) .

mx, my, bx, and by are learnable parameters used to model any small affine error that may occur
during camera calibration. We expect that mx,my ≈ 1 and bx, by ≈ 0.

The trajectory has now been converted to canvas coordinates, and we denote it as

[(x′
1, y

′
1, h1), · · · , (x′

n, y
′
n, hn)].

We proceed by rendering each its n − 1 segments separately. Fix an arbitrary k, and note that
segment k goes from (x′

k, y
′
k, hk) to (x′

k+1, y
′
k+1, hk+1).

Our approach to rendering the segment is to first define a constant H ×W × 2 tensor G of
canvas coordinates, where H and W are the dimensions of the canvas. One channel of this tensor
contains the x coordinates, and the other contains the y coordinates, as seen in Figure 4.1. For
convenience, we also define u =

[
x′
k y′k

]T and v =
[
x′
k+1 y′k+1

]T .
We compute a Distance Map that stores the distance of each coordinate in G to the segment.

This is computed with the following equation (note that the vector operations involving G are

9

done element-wise):

Distance Map = min(
∥∥(G− u)− projv−u(G− u)

∥∥ ,
∥G− u∥ , ∥G− v∥)).

(4.1)

That the first term computes the distance from each point in G to the line through u and v, and
the last two terms calculate the distance to the endpoints. Thus, taking the min of the three yields
the desired result.

We also compute a Height Map, which represents the height of the brush tip as it moves over
the segment. For each coordinate, we project it onto the segment and compute the height by
linear interpolation between hk and hk+1:

T = clamp[0,1]

(∥∥projv−u(G− u)
∥∥

∥v − u∥

)
(4.2)

Height Map = (1− T) · hk + T · hk+1. (4.3)

We make the assumption that there is an affine relationship between the height of the brush
tip and the thickness of the stroke. Thus, we introduce two learnable parameters α and β, and
obtain a Thickness Map like so:

Thickness Map = α · Height Map + β. (4.4)

If the distance between a coordinate and the segment is less than the stroke thickness, then
that coordinate should be affected by the stroke. We assume there is a gradual dropoff in dark-
ness as we get further from the center of the segment. This reasoning motivates the following
calculation for the darkness values:

Darkness =
[

clamp[0,1]

(
1− Distance Map

Thickness Map

)]c
. (4.5)

Thus, coordinates directly on the segment get a darkness value of 1, and coordinates that are a
stroke thickness away get a darkness value of 0. This also introduces another learnable parameter
c which determines how quickly the darkness values drop off as we get further from the segment.

Finally, we take the max darkness values over all segments to obtain the rendered stroke.
In total, the Traj2Stroke model has only 7 learnable parameters:

(xm, ym, xb, yb, α, β, c).

Essentially, the output is constrained to be a polyline that follows the trajectory of the brush.
During training, the model only learns the small affine transformation, the thickness parameters,
and the darkness dropoff. As we will show in Section 5.3, this design is more precise and more
robust to overfitting compared to CNN renderers.

10

Chapter 5

Results

Figure 5.1 shows an array of drawings produced by Spline-FRIDA. We capture five human draw-
ings using the mocap system, each with distinct stroke styles, which are presented in the top row.
Each human drawing is used to fine-tune a separate TrajVAE, resulting in five unique TrajVAEs.
Each TrajVAE is then used to plan a series of drawings with various objectives. These objectives
are displayed in the left column.

The individual styles of the drawing trajectories are preserved by the TrajVAEs. For instance,
the fourth human drawing exhibits tiny, curly lines, which are reproduced in the drawings pro-
duced by its corresponding TrajVAE. Similarly, the fifth human drawing is composed of small
circles, which is also true for the robot drawings in its column.

5.1 Human Evaluations

To what extent is Spline-FRIDA able to capture the stroke style of a drawing? And, in general, are
Spline-FRIDA’s drawings better than those made by FRIDA? To obtain quantitative answers to
these questions, we conducted a survey and released it to 100 participants on Amazon Mechanical
Turk.

For the first part of the survey, we asked participants to match Spline-FRIDA drawings with
human drawings that have the same stroke style. More specifically, for each participant, we
pick a random row of Figure 5.1 (technically, an extended version with 11 different objectives),
shuffle it, and for each drawing, ask them to pick the closest human drawing in stroke style. We
told participants to “focus on the characteristics of individual strokes, such as their trajectories,
shapes, and curves.” The results of this experiment are seen in Figure 5.2.

The high values along the diagonal suggest that, in general, participants were able to choose
the correct human drawing used to style each robot drawing. Style 5, which corresponds to the
drawings made with small circles, seemed to be particularly distinguishable. Meanwhile, style
1 (which uses very short strokes) was often confused with style 4 (which also uses short strokes
but is more curly), and style 2 (which uses long strokes) was confused with style 3 (which also
can have long strokes, but tend to be completely straight). Nevertheless, all five encoded styles
are most strongly associated with the correct human drawings.

The second part of the survey asked participants’ subjective opinions on Sharpie drawings

11

Artist Drawing
Ob

je
ct
iv

e

Figure 5.1: Example drawings made by Spline-FRIDA. Each column represents a distinct tra-
jectory style and each row uses a different objective. For these examples, we maximize the CLIP
similarity score between the canvas and the objective. The top row contains original drawings
made by human artists on our mocap system. One VAE was fine-tuned on each human drawing
and used to plan the drawings in each column.

made by FRIDA vs. Spline-FRIDA. Each participant was shown an objective image and two
robot drawings of it, one from FRIDA and one from Spline-FRIDA. Both robot drawings were
executed on the physical robot so that any Sim2Real gap comes into play. The questions and
tallied responses are shown in Table 5.1.

Respondents believed that Spline-FRIDA’s drawings, in comparison to FRIDA’s, appeared
more human-made, had higher overall quality, better matched the reference image, and were
more artistic. Respondents also perceived the Spline-FRIDA drawings as more “abstract”, al-
though opinions on this were somewhat split.

12

Figure 5.2: Confusion matrix for matching task. The x-axis represents the index of the specific
TrajVAE used to generate the drawing, and the y-axis represents the index of the human drawing
participants thought was most similar. The five human drawings/styles the same ones as in the
top row of Figure 5.1, with the same order.

5.2 Trajectory Distributions

In figure 5.3, we visualize the latent space for a VAE trained on multiple drawing sessions. We
encode all of the human trajectories into latent vectors, then project them down to 2 dimensions
using t-SNE [24]. We then draw each human trajectory at its corresponding 2d coordinates.

We observe human trajectories spread throughout the space, forming several homogeneous
clusters. This structured organization indicates that the VAE effectively learns a correlation
between trajectories and latent vectors. Consequently, an optimization-based planning algorithm
is likely to be effective.

13

Figure 5.3: Mapping the latent space. We visualize the TrajVAE latent space by drawing tra-
jectories at their respective coordinates, projected down to 2 dimensions via t-SNE. To generate
this plot, we use a TrajVAE that is trained on multiple sessions of human trajectory data.

14

FRIDA Spline-FRIDA

Which drawing looks more like it was drawn by
a human (rather than a robot)?

27 73

Which drawing looks better overall? 16 84

Which drawing better matches the reference im-
age?

16 84

Which drawing is more artistic? 18 82

Which drawing is more abstract? 40 60

Table 5.1: Opinions on FRIDA vs Spline-FRIDA. Each cell shows the number of participants
that chose the system for the given question. Overall, participants thought that compared to
FRIDA, drawings made by Spline-FRIDA were more human-like, higher quality, more true to
the objective, and more artistic.

5.3 Stroke Modeling Experiments
The purpose of a stroke model is to differentiably render trajectories. We experiment with a va-
riety of methods to do this and evaluate them both quantitatively and qualitatively in a controlled
experiment. In total, we tried four methods:

CNN

Our baseline, a convolutional neural network. This is analogous to FRIDA’s renderer architec-
ture, except it takes in full trajectory rather than the (length, bend, height) that FRIDA uses.

CNN with CoordConv

To render a trajectory, one subproblem the renderer must solve is mapping Cartesian coordinates
to one-hot pixel space. Liu et. al. [13] showed that traditional CNNs can have difficulty with this,
so we implement their suggestion of using CoordConv layers instead of traditional convolutions.
This means adding two additional channels to the input of each convolution: one containing the
x-coordinates of each pixel, and the other containing the y-coordinates.

Traj2Stroke

Our new method described in Section 4.4.

Traj2Stroke with U-Net

Our new method, but with an additional Pix2Pix network appended after the output layer. The
goal of this additional layer is to refine the Traj2Stroke output by learning subtle effects such as

15

texture and bristle drag. The architecture of the new layer closely follows that of U-Net [19]. We
freeze the U-Net weights during the first half of the training and unfreeze them for the second
half. The purpose of this is to train the Traj2Stroke portion first and get it as close as possible to
the ground truth, before using the U-Net to refine it. Inspired by the success of ControlNet [27],
we utilize a zero-convolution so that the U-Net has no effect on the output while its weights are
frozen.

An important metric we wish to evaluate is generalizability. We define a stroke model as gen-
eralizable if it can generate reliable stroke predictions, even when given trajectories that are dis-
similar to the ones used to train it. This is important because stroke models are time-consuming to
train; it requires physically executing trajectories on a robot. A generalizable stroke model only
needs to be trained once per drawing medium. It can then be used out-of-the-box for planning
with any TrajVAE, thus saving time and effort.

In order to evaluate generalizability, we train and test the stroke model on trajectories from
different distributions. More precisely, we create two datasets, A and B. Both datasets contain
(trajectory, stroke image) pairs. For dataset A, the trajectories are sampled from a generic Tra-
jVAE, trained on a session that we judge to have good stroke diversity. For dataset B, we use
trajectories from more specialized TrajVAEs, trained on sessions with very unique styles. We
train the model using dataset A, and we evaluate generalizability by checking its performance on
dataset B.

We run the experiment twice, once for each of two drawing mediums: a sharpie and a thin
paintbrush. The experiment results can be seen in Table 5.2. The Traj2Stroke architecture with-
out U-Net achieves the lowest loss on sharpie strokes. Adding the U-Net hurts performance on
sharpie strokes, though it achieves the best results on brush strokes. We do not get much benefit
from using CoordConv over traditional convolutions.

Medium CNN w/ CoordConv Traj2Stroke w/ U-Net

Sharpie .00107 .00095 .00055 .00098
Brush .00162 .00163 .00158 .00153

Table 5.2: Quantitative comparison of stroke models. This table shows the average L1 loss
of each stroke model when predicting either sharpie or brush strokes (lower is better). Loss
is calculated on dataset B (out-of-distribution) trajectories only. Traj2Stroke achieves the best
results for sharpie strokes, and Traj2Stroke with U-Net is the best for brush strokes.

Visually, example predictions generated by each model can be seen in Figure 5.4. All exam-
ples are from dataset B, meaning that these trajectories are from a TrajVAE different from the one
used during training. The vanilla CNN fails to generalize in certain cases. Changing standard
convolution layers into CoordConv layers does not seem to help much. The Traj2Stroke model
is near-perfect for the sharpie strokes. It also generates reasonable output for the brush strokes,
although it is unable to capture the texture. The U-Net layer is an attempt to mitigate this; its
design aims to combine the precision of Traj2Stroke with the flexibility of convolutions. While
the outputs indeed seem to capture the texture of paint, they also tend to be more blotchy, which
is concerning for an optimization-based planner.

16

Ground Truth CNN w/ CoordConv Traj2Stroke w/ U-Net

Figure 5.4: Visualizing the outputs of various stroke models. The first three rows contain
sharpie strokes, and the last three contain brush strokes. Traj2Stroke is near-perfect for the
sharpie strokes, and reasonable for the brush strokes. The CNN-based models may fail to gener-
alize to novel trajectories (rows 1, 3, 4).

17

Based on these findings, we choose to implement the base Traj2Stroke model (without U-
Net) for Spline-FRIDA. As illustrated in Figure 5.5, the resulting Sim2Real gap for Sharpie
drawings is very low. This is a huge improvement compared to the original FRIDA results
depicted in Figure 3.1.

Plan Execution

Figure 5.5: Spline-FRIDA’s low Sim2Real gap. We compare a plan made by Spline-FRIDA
with its execution (physically drawn with a robot). The two are nearly identical.

18

Chapter 6

Limitations/Future Work

Artistic style is nuanced and subjective. Style can be broken down into roughly 7 elements:
Lines, shapes, space, texture, value, and color [21]. In this thesis, we focus on capturing style by
modeling brush stroke trajectories. These are intra-stroke attributes which only cover the style
elements of lines and shapes. In future work, we hope to adapt the method to capture the other,
inter-stroke style elements.

HelpingHand [15] offers an alternative approach to stroke stylization by running a postpro-
cessing algorithm that refines existing drawn trajectories to better align with a large dataset of
human-made strokes. By applying HelpingHand’s algorithm to Spline-FRIDA’s painting plans,
it would be possible to enhance the stylistic quality of the strokes further. Moreover, Helping-
Hand has the capability to transform low-dimensional trajectories, like the 3-DOF paths used in
Spline-FRIDA, into fully articulated 6-DOF trajectories, encompassing 2D position, pressure,
2D tilt, and rotation. This integration could serve as an efficient method to incorporate these ad-
ditional degrees of freedom into Spline-FRIDA, resulting in drawings that more closely emulate
human styles.

Optimization-based planning can be computationally expensive. In particular, our pipeline
takes about an hour to plan a 400-stroke painting on a NVIDIA GeForce 4090. Additionally, it
also requires a significant amount of memory. This is because during each optimization iteration,
all the gradients need to be stored for every stroke’s forward pass simultaneously, resulting in a
linear relationship between the number of strokes and the memory requirements. To address this
issue, we modify our algorithm so that each iteration, we only compute gradients for a random
subset of n strokes, where n is the maximum number that does not exceed GPU memory (we
use n = 80 in practice). The result is that only a random subset of strokes are updated by each
backward pass.

Optimization methods for stroke-based rendering can also be susceptible to local minima,
especially when using a pixel-wise loss function with an image objective. Fundamentally, this is
due to the fact that strokes in the plan can take only small steps during optimization. As discussed
by Zou et al. [28], when using an L2 objective, there can be a “zero-gradient” problem where
strokes that are initialized in bad locations do not move because the objective function is locally
flat. We also encounter this issue when using an L2 objective. We find that using CLIP loss
generally works much better.

We find that optimization-based methods for paint planning are inherently limited by these

19

issues. Thus, in future work, we would like to explore alternatives that are more cost-effective
for painting planning. One promising direction is reinforcement learning methods like Learning
To Paint [4], which train policy networks to output subsequent strokes given the current canvas
and objective. Paint Transformer [14] also has an interesting approach, in which they treat paint
planning as a stroke prediction problem. While these papers both focus on simulated painting
environments, our work introduces a robust method for bridging the gap between simulated and
real-world brushstrokes. Consequently, we believe that integrating Traj2Stroke with approaches
like LearningToPaint or PaintTransformer holds significant potential.

6.1 RL-FRIDA
As of the time of this writing, development has started but not finished for a new painting sys-
tem called RL-FRIDA. RL-FRIDA trains a policy network via reinforcement learning to predict
stroke parameters given images of the current canvas and the goal.

Currently, our RL agent utilizes the model-based DDPG algorithm introduced by Learning
To Paint [4]. This algorithm is similar to traditional DDPG [12], but makes use of a differentiable
renderer to allow gradients to flow through the environment. This property can be used to update
the actor and critic networks much more effectively, resulting in faster convergence.

In order to train the agent to draw using Sharpie strokes, we replace Learning To Paint’s
differentiable renderer with Traj2Stroke. Preliminary results of this are shown in Figure 6.1. We
experiment with both L2 loss and CLIP loss as the source of reward for the agent. In both cases,
the model is able to generate reasonable drawings after training for roughly 15 hours, though the
quality is still lacking compared to drawings made by Spline-FRIDA. On the other hand, RL-
FRIDA is order of magnitudes faster at inference time than Spline-FRIDA and FRIDA. It needs
less than a second to plan out batches of 64 drawings at a time.

20

Figure 6.1: RL-FRIDA Preliminary Results. This figure depicts some example plans made by
RL-FRIDA. The left column shows drawings made by an agent trained to minimize the pixel-
wise L2 loss to the target, while the right column shows drawings made by an agent trained to
minimize CLIP loss.

21

22

Chapter 7

Conclusions

In this thesis, we introduce a method to plan and execute robot sketches while allowing the user
to control the style of strokes used. Using motion capture, we collect datasets of human stroke
trajectories in multiple styles. These datasets are used train varational autoencoders that generate
stroke trajectories with specific styles. We then incorporate these into a differentiable rendering
pipeline, which allows us to plan drawings via an iterative optimization process. However, we
discover that FRIDA’s neural renderer fails on complex, thin brush strokes. Thus, we experiment
with different ways of rendering the trajectories. Our best performing architecture, Traj2Stroke,
is robust and requires only a small dataset of ground truth strokes.

23

24

Bibliography

[1] Cole Bateman. Creating for Creatives: A Humanistic Approach to Designing AI Tools
Targeted at Professional Animators. PhD thesis, Harvard University, 2021. 1

[2] Nicholas Davis, Chih-PIn Hsiao, Kunwar Yashraj Singh, Lisa Li, and Brian Magerko. Em-
pirically studying participatory sense-making in abstract drawing with a co-creative cogni-
tive agent. In Proceedings of the 21st International Conference on Intelligent User Inter-
faces, pages 196–207, 2016. 1

[3] Tom S. F. Haines, Oisin Mac Aodha, and Gabriel J. Brostow. My text in your handwriting.
ACM Trans. Graph., 35(3), may 2016. ISSN 0730-0301. doi: 10.1145/2886099. URL
https://doi.org/10.1145/2886099. 2.1

[4] Zhewei Huang, Wen Heng, and Shuchang Zhou. Learning to paint with model-based deep
reinforcement learning, 2019. 2, 2.1, 2.2, 6, 6.1

[5] Ajay Jain, Amber Xie, and Pieter Abbeel. Vectorfusion: Text-to-svg by abstracting pixel-
based diffusion models, 2022. 2.2

[6] Chipp Jansen and Elizabeth Sklar. Exploring co-creative drawing workflows. Frontiers in
Robotics and AI, 8:577770, 2021. 1

[7] Harry H. Jiang, Lauren Brown, Jessica Cheng, Mehtab Khan, Abhishek Gupta, Deja
Workman, Alex Hanna, Johnathan Flowers, and Timnit Gebru. Ai art and its impact
on artists. In Proceedings of the 2023 AAAI/ACM Conference on AI, Ethics, and So-
ciety, AIES ’23, page 363–374, New York, NY, USA, 2023. Association for Comput-
ing Machinery. ISBN 9798400702310. doi: 10.1145/3600211.3604681. URL https:
//doi.org/10.1145/3600211.3604681. 1

[8] Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2022. 4.3

[9] Tomas Lawton, Francisco J Ibarrola, Dan Ventura, and Kazjon Grace. Drawing with re-
framer: Emergence and control in co-creative ai. In Proceedings of the 28th International
Conference on Intelligent User Interfaces, pages 264–277, 2023. 1

[10] Shayla Lee and Wendy Ju. Adversarial robots as creative collaborators. arXiv preprint
arXiv:2402.03691, 2024. 1

[11] Tzu-Mao Li, Michal Lukáč, Gharbi Michaël, and Jonathan Ragan-Kelley. Differentiable
vector graphics rasterization for editing and learning. ACM Trans. Graph. (Proc. SIG-
GRAPH Asia), 39(6):193:1–193:15, 2020. 2.2

[12] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yu-

25

https://doi.org/10.1145/2886099
https://doi.org/10.1145/3600211.3604681
https://doi.org/10.1145/3600211.3604681

val Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement
learning, 2019. URL https://arxiv.org/abs/1509.02971. 6.1

[13] Rosanne Liu, Joel Lehman, Piero Molino, Felipe Petroski Such, Eric Frank, Alex Sergeev,
and Jason Yosinski. An intriguing failing of convolutional neural networks and the coord-
conv solution, 2018. URL https://arxiv.org/abs/1807.03247. 5.3

[14] Songhua Liu, Tianwei Lin, Dongliang He, Fu Li, Ruifeng Deng, Xin Li, Errui Ding, and
Hao Wang. Paint transformer: Feed forward neural painting with stroke prediction, 2021.
2, 2.1, 2.2, 6

[15] Jingwan Lu, Fisher Yu, Adam Finkelstein, and Stephen DiVerdi. Helpinghand: example-
based stroke stylization. ACM Trans. Graph., 31(4), jul 2012. ISSN 0730-0301. doi: 10.
1145/2185520.2185542. URL https://doi.org/10.1145/2185520.2185542.
2.1, 6

[16] Xu Ma, Yuqian Zhou, Xingqian Xu, Bin Sun, Valerii Filev, Nikita Orlov, Yun Fu, and
Humphrey Shi. Towards layer-wise image vectorization, 2022. 2

[17] Vihaan Misra, Peter Schaldenbrand, and Jean Oh. Robot synesthesia: A sound and emotion
guided ai painter, 2023. 3

[18] Duncan Robertson. The dichotomy of form and content. College English, 28(4):273–279,
1967. 1

[19] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks
for biomedical image segmentation, 2015. URL https://arxiv.org/abs/1505.
04597. 5.3

[20] Peter Schaldenbrand and Jean Oh. Content masked loss: Human-like brush stroke planning
in a reinforcement learning painting agent, 2021. 2, 2.1

[21] Peter Schaldenbrand, Zhixuan Liu, and Jean Oh. Styleclipdraw: Coupling content and style
in text-to-drawing translation. arXiv preprint arXiv:2202.12362, 2022. 1, 6

[22] Peter Schaldenbrand, James McCann, and Jean Oh. Frida: A collaborative robot painter
with a differentiable, real2sim2real planning environment, 2022. (document), 1, 2, 3

[23] Peter Schaldenbrand, Gaurav Parmar, Jun-Yan Zhu, James McCann, and Jean Oh. Cofrida:
Self-supervised fine-tuning for human-robot co-painting. In 2024 IEEE International Con-
ference on Robotics and Automation (ICRA). IEEE, 2024. 3

[24] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal
of Machine Learning Research, 9:2579–2605, 2008. URL http://www.jmlr.org/
papers/v9/vandermaaten08a.html. 5.2

[25] XiMing Xing, Chuang Wang, Haitao Zhou, Jing Zhang, Qian Yu, and Dong
Xu. Diffsketcher: Text guided vector sketch synthesis through latent diffu-
sion models. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt,
and S. Levine, editors, Advances in Neural Information Processing Sys-
tems, volume 36, pages 15869–15889. Curran Associates, Inc., 2023. URL
https://proceedings.neurips.cc/paper_files/paper/2023/file/
333e67fc4728f147d31608db3ca78e09-Paper-Conference.pdf. 2.2

26

https://arxiv.org/abs/1509.02971
https://arxiv.org/abs/1807.03247
https://doi.org/10.1145/2185520.2185542
https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/1505.04597
http://www.jmlr.org/papers/v9/vandermaaten08a.html
http://www.jmlr.org/papers/v9/vandermaaten08a.html
https://proceedings.neurips.cc/paper_files/paper/2023/file/333e67fc4728f147d31608db3ca78e09-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/333e67fc4728f147d31608db3ca78e09-Paper-Conference.pdf

[26] Ximing Xing, Haitao Zhou, Chuang Wang, Jing Zhang, Dong Xu, and Qian Yu. Svg-
dreamer: Text guided svg generation with diffusion model. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 4546–
4555, June 2024. 2.2

[27] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-
image diffusion models, 2023. URL https://arxiv.org/abs/2302.05543. 5.3

[28] Zhengxia Zou, Tianyang Shi, Shuang Qiu, Yi Yuan, and Zhenwei Shi. Stylized neural
painting, 2020. 2, 6

27

https://arxiv.org/abs/2302.05543

	1 Introduction
	2 Related Work
	2.1 Stroke Primitives
	2.2 Differentiable Rendering

	3 Background
	4 Methods
	4.1 Overview
	4.2 Motion Capture Drawing Recording and Processing
	4.3 TrajVAE
	4.4 Traj2Stroke Model

	5 Results
	5.1 Human Evaluations
	5.2 Trajectory Distributions
	5.3 Stroke Modeling Experiments

	6 Limitations/Future Work
	6.1 RL-FRIDA

	7 Conclusions
	Bibliography

